
OPEN ACCESS

ll
Perspective

A historical perspective
of biomedical explainable AI research
Luca Malinverno,1,14 Vesna Barros,2,3,14,* Francesco Ghisoni,1,14 Giovanni Visonà,4 Roman Kern,5,6 Philip J. Nickel,7
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THE BIGGER PICTURE Understanding the inner working of machine-learning models has become a crucial
point of discussion in fairness and reliability of artificial intelligence (AI). In this perspective, we reveal insights
from recently published scientific works on explainable AI (XAI) within the biomedical sciences. Specifically,
we speculate that the COVID-19 pandemic is associated with the rate of publications in the field. Current
research efforts seem to be directed more toward explaining black-box machine-learning models than
designing novel interpretable architecture. Notably, an inflection period in the publication rate was observed
in October 2020, when the quantity of XAI research in biomedical sciences surged upward significantly.
While a universally accepted definition of explainability is unlikely, ongoing research efforts are pushing the
biomedical field toward improving the robustness and reliability of applied machine learning, which we
consider a positive trend.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY

The black-box nature of most artificial intelligence (AI) models encourages the development of explainability
methods to engender trust into the AI decision-making process. Such methods can be broadly categorized
into two main types: post hoc explanations and inherently interpretable algorithms. We aimed at analyzing
the possible associations between COVID-19 and the push of explainable AI (XAI) to the forefront of biomed-
ical research. We automatically extracted from the PubMed database biomedical XAI studies related to con-
cepts of causality or explainability and manually labeled 1,603 papers with respect to XAI categories. To
compare the trends pre- and post-COVID-19, we fit a change point detectionmodel and evaluated significant
changes in publication rates. We show that the advent of COVID-19 in the beginning of 2020 could be the
driving factor behind an increased focus concerning XAI, playing a crucial role in accelerating an already
evolving trend. Finally, we present a discussion with future societal use and impact of XAI technologies
and potential future directions for those who pursue fostering clinical trust with interpretable machine
learning models.
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INTRODUCTION

The COVID-19 pandemic has accelerated medical research and

the way medical care is provided. Vaccines were developed and

approved in record time,1 and novel drugs were rapidly designed

for the treatment of severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2) infection.2 Simultaneously, COVID-19

has caused major disruptions and backlogs in health systems,

leaving many millions of people without care in the EU3 and

around the world.4 As a direct response to the mounting pres-

sures, primary and community care underwent a significant

transformation, accelerating the use of remote consultation,5

automatic triage,6 and virtual monitoring and care.7,8 In order

to decrease the backlog and restore and improve equitable

healthcare, a combination of strategies have been identified,

including the efficient adaptation of new technologies and digital

solutions, additional funding, sufficient workforce, and infra-

structure improvements.3 Even pre-COVID-19, information tech-

nology was suggested to be a key driver for higher quality, better

effectiveness, and more efficiency in health systems,9 and

several studies have found that computational models can be

on par with or outperform human experts in certain diagnostic

and prognostic tasks.10 However, while artificial intelligence

(AI) technologies have become a growth engine in many other in-

dustries, development and adoption of such technologies

across the health ecosystem have been much slower.11 During

the pandemic, many AI research teams have stepped up their

efforts in this application area, and hundreds of predictive tools

to combat COVID-19 have been devised and, in some cases,

applied in the clinic. Their potential and overall clinical relevancy

are currently under critical discussion in several recent re-

views.12–14 The opacity and black-box nature of many state-of-

the-art AI systems additionally raise concerns in clinicians,

care providers, and regulators and prevent their rapid integration

into the high-stakes clinical decision-making process.15

It has been argued that explainable AI can engender transpar-

ency and increase adoption; however, the term ‘‘explainable AI’’

(XAI) is still not a well-defined concept. As discussed in Miller,16

explainability or interpretability is how human comprehensible

the decisions of an AI system are, which is commonly referred

to as XAI. The concept of XAI dates back to the mid-1970s, while

the term itself is newer. It was coined in 2004, but only since 2016

has XAI received significant attention,17 including discussions of

what its underlying concept is,18 the role of XAI in trustworthi-

ness,17,19,20 and its importance in the biomedical domain.21,22

In recent years, a considerable number of review and perspec-

tive papers have been published with the goal of organizing the

field of XAI (see, e.g., Adadi and Berrada,17 Barredo Arrieta

et al.,23 Das and Rad,24 and Vilone and Longo,25 and references

therein). Yet, only a few studies have focused on XAI in the field of

medicine and health (see, e.g., Jiménez-Luna et al.,26 Tjoa and

Guan,27 and Loh et al.28). Conversely, we have not found a study

that focuses on how the field of biomedical XAI has changed in

recent years. In this perspective, we provide a historical and con-

ceptual perspective of the evolution of XAI research within

biomedical sciences. We aim at giving an overview of the

state-of-the-art XAI, the trends observed in the last few years,

and the current explainability techniques. We hypothesize that
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the interest of the community is not primarily in the development

of new XAI methods but rather in applying existent techniques to

explain their black-box models. We hope that this work benefits

researchers from various fields, serving as a reference point for

those who want to get a deeper understanding of the direction

in which XAI is going. The perspective is organized as follows:

it starts with a discussion of the scope of XAI in the context of

biomedicine and health. This is followed by a historical perspec-

tive, a review of the change in the extent of research performed

over the years, and a conceptual perspective, a mapping of the

research into five different types of studies. Finally, the perspec-

tive ends with emerging themes and open research areas in

the field.

BIOMEDICAL XAI: OVERVIEW OFMEANING AND SCOPE

The ultimate aim of XAI is to explain why a model produced a

specific result. Such a goal can be achieved in a variety of man-

ners, ranging from post hoc explanations to inductive biases that

constrain model architectures. A particularly compelling frame-

work to consider within this setting is the study of causality,

through which we can move from observational explanations

to a more in-depth analysis of the model in question, in the

form of interventional and counterfactual interrogation. When a

causal model is available, not only can we attempt to diagnose

the working of the model, but we can also ask questions such

as ‘‘how would this prediction change if a specific variable had

a different value?’’ As a stricter framework, causality offers

compelling tools to explain the workings of machine-learning

models, and as such, we opted to include publications relevant

to causality in biomedicine in the present meta-analysis. Un-

doubtedly, counterfactuals have become an essential part of

XAI, enabling researchers to explain past outcomes and predict

future events by identifying causal relations in the data.29,30

Thus, causal machine learning plays a central role in the biomed-

ical domain.31,32 For instance, learning the optimal medication or

therapy for a patient requires carefully curated data or causal ef-

fect estimation, which classic machine-learning models do not

necessarily identify.33 Building causal models of the world can

support the understanding of why amodel selects a certain inter-

vention as an optimal one, which in turn can help the AI

developer in improving the technology, ultimately leading to an

expansion of the medical knowledge. Notably, while XAI helps

build user trust in the AI systems and provides useful insights

for AI developers, trustworthy AI is a different concept. Trustwor-

thiness encompasses not only technologies but also practices,

and it has been institutionalized in policy documents guiding AI

innovation, such as the EU’s High Level Expert Group on AI.

To develop a historical view and a perspective on biomedical

XAI, we started by reviewing citations from PubMed that fit the

above scope definition.

PubMed is a free database of citations of publications in the

biomedical domain that was developed by the National Center

for Biotechnology Information (NCBI). It is a major source of liter-

ature analysis for biomedical researchers due to its comprehen-

siveness and accessibility. We performed a systematic review of

PubMed papers following the recommendations of the PRISMA

statement.34 We applied manual and automatic methods as



Figure 1. Trends in XAI papers related to COVID-19
(A) Proportions of COVID-19 categories in the dataset.
(B) Cumulative number of XAI papers for each category throughout time. The increase in COVID-19-related papers, represented by the light blue and light green
curves, set off around 7 months after the pandemic onset.
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illustrated in Figure S1; that is, we searched in the PubMed data-

base for all citations until November 3, 2022, with no restrictions

on regions, languages, or publication types. Citations were

added to our cohort if they contained biomedical concepts in

the abstracts or titles, which were automatically extracted based

on a prespecified set of keywords (Table S1; Data S1). We

excluded studies that were not related to AI and limited the

search space with a start date of January 1, 2010 (defined based

on the step change of significant attention to the advances of

deep-learning technologies). Lastly, we included only papers

that were related to XAI, considered as the wide term that in-

cludes concepts of the two broad and overlapping subjects dis-

cussed above: explainability and causal analysis. The complete

information regarding the citation collection criteria used in the

data collection process is illustrated in Figure S2. Manual review

of the abstracts complemented the automatic extraction. The

result is a cohort of 1,276 peer-reviewed papers that study

biomedical XAI. In the next section, we discuss research trends

that we found in our analysis.

BIOMEDICAL XAI: A HISTORICAL PERSPECTIVE
THROUGH THE LENS OF COVID-19

To investigate the trend of biomedical XAI and the possible role

of the COVID-19 pandemic in bringing this field to the forefront of

AI research, we used the publication date and constructed a time
series defined by the number of biomedical XAI PubMed papers

published per month. We focused on the date of COVID-19

outbreak, which was considered March 1, 2020. 261 abstracts

on biomedical XAI were published before the outbreak and

1,017 after. After careful selection of studies and iterativemanual

revision of abstracts, we investigated whether publications

related to causality and explainability showed the same trends

pre- and post-COVID-19 (Figure S3). There was amuch stronger

growth in the rate of explainability publications than in causality,

which could possibly be due to the difficulties in performing

causal inference versus how convenient explaining an existing

model is.

We then manually annotated the role of COVID-19 in each pa-

per, where each annotator had three options to label a study: (1)

studies that do not mention the pandemic in their titles or

abstracts, (2) studies that used COVID-19 data (e.g., chest radio-

graphs or computed tomography [CT] scans, number of SARS-

CoV-2 infections, or administrated vaccines) to predict clinical

outcomes, or (3) studies that mentioned COVID-19 as a reason

or driving force for their research. Expectedly, the distribution

of papers per label was uneven (Figure 1A): 1,137 studies

(approximately 90%) did not mention the pandemic, whereas

101 studies (8%) used COVID-19 data and 37 studies mentioned

COVID-19 as a driving force for their research. Interestingly,

COVID-19-related publications significantly increased several

months after the pandemic outbreak (Figure 1B, zoomed-in
Patterns 4, September 8, 2023 3



Figure 2. Comparison between the overall
number of biomedical XAI publications (blue
curve) and its proportion within the
biomedical AI field (brown curve)
Both plots show quarterly patterns of publications
throughout time smoothed by a 1-year rolling
average window.
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image), possibly representing the time period for researchers to

collect enough data, design the studies, and start publish-

ing them.

As an exploratory analysis, we investigated whether a change

point is detected at the time of the pandemic outbreak or in the

following months (Data S2). We found an inflection period in

October 2020, when the quantity of XAI research in biomedical

sciences surged upward significantly (Figure S4A). Pinpointing

a specific cause for this acceleration is far from trivial. In the

past 10 years, XAI has received increased attention in the form

of funding, research programs, and legal and ethical require-

ments. Examples include the DARPA program35 or the European

Commission’s White Paper on AI.36 However, we speculate that

the advent of the COVID-19 pandemic itself could have been an

important factor in bringing the field of XAI to the forefront in

many AI-related research fields. The well-documented diffi-

culties of AI (lack of impact of AI) in COVID-19 analysis could

have motivated the need to better understand how models

work and the origin of predictions.12,13 It is worth noting that

across the most cited papers we reviewed, often the leading

author (last co-author) was an AI researcher that expanded their

horizon to the applied biomedical field.37,38

We then attempted to quantify the change observed and esti-

mated that the field of biomedical XAI was pushed forward by

about 25 months (Figure S4B). However, establishing the causal

nature of this link would require a large-scale analysis of multiple

research topics trends, which is beyond the scope of the current

meta-analysis.

Finally, we compared the numbers of biomedical XAI publi-

cations to the ratio between biomedical XAI and biomedical

AI publications a long time (Figure 2). We found an exponential

growth of biomedical XAI papers, which is followed by an in-

crease in the ratio of biomedical XAI/biomedical AI papers.

This is a faster exponential growth than the one detected in

publications of AI in biomedical sciences in previous studies,39

as reflected by the constant increase in the ratio of biomedical

XAI/biomedical AI papers. Importantly, the rapid increase in XAI

publications is not only due to the increase in scientific litera-

ture using COVID-19 data (see, for instance, the exponential

growth of the use of medical imaging and AI in the context of

COVID-1940). On the contrary, our manual review showed

that only 8% of the biomedical XAI papers were devoted to

analysis of COVID-19 data, whereas 3% (37 papers) referred
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to COVID-19 as a motivation to discuss

or apply XAI methods. This further corrob-

orates our hypothesis that the advent of

the COVID-19 pandemic acted as a cata-

lyst and contributed to pushing the level of

interest in XAI methodologies to a critical

point in an already evolving trend.
The papers list, the manual annotation, and the code used for

all analysis can be found in Fghisoni and Visonà.41

BIOMEDICAL XAI: STUDY TYPES

In order to get a more comprehensive view of the type of

research performed in biomedical XAI, each abstract was anno-

tated according to the type of study reported in the paper. We

followed the approach discussed in Vilone and Longo25 and

labeled the abstracts with one of the following categories that

best described the study: (1) review or meta-analysis, (2) discus-

sion of XAI concepts, (3) introduction of novel XAI methods, or (4)

evaluation or application of XAI methods and added a fifth cate-

gory, (5) datasets or tools that support XAI.

In total, 642 papers (approximately 50% of the eligible studies)

evaluated or applied existing XAI methods in their respective

studies, followed by 214 papers (17%) that introduced a novel

XAI technology (either by innovating the way they explain their

AI algorithms’ decisions or by adapting previous XAI ideas to a

new research context; Figure 3A). Letters, comments, and narra-

tives discussing XAI technologies comprised 13% of the cohort.

Datasets or tools that support XAI technologies (e.g., software

packages, AI frameworks and workflows, medical image data-

sets) and reviews on XAI methods composed together approxi-

mately 20% of the entire cohort.

We then tracked the Google Scholar citations of all eligible

publications, considered as a proxy for public interest, and

computed the number of citations per month since the date of

publication (Figure 3B). As expected, review papers and novel

methods attract most attention, as reflected by average citations

per month, whereas application and evaluation of methods draw

less attention. The relatively high average number of citations of

papers with conceptual discussion is somewhat surprising and

possibly reflects the heated debate on the role of XAI and its

importance in the biomedical domain.

BIOMEDICAL XAI: FUTURE PROSPECTS

The debate around XAI is an ongoing effort that requires input

from experts in computer science, philosophy, ethics, and law.

The largest challenges arise from the difficulty of defining and

quantifying ‘‘explainability’’: how do we decide if the output of

a model is interpretable? A very deep decision tree model, for



Figure 3. Biomedical XAI statistics and trends of the cohort of eligible papers
(A) Proportions of biomedical XAI categories.
(B) Average number of citations per month since published date. Error bars represent 95% confidence intervals.
(C) Counts of biomedical XAI papers published per quarter year. For each category (colored curve), we smoothed quarterly patterns by using the 1 year rolling
average window.
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example, would offer a direct explanation for the predicted

outcome while being useless for human interpretation due to

the sheer amount of split choices presented. And yet, despite

these obstacles, ongoing discussion is necessary for the

advancement of AI, especially in high-stakes settings, not only

to improve robustness and reliability but also to satisfy the

growing levels of legal requirements for the ‘‘right of explanation’’

that is being adopted to protect the stakeholders involved.42

Briefly, XAI algorithms can be divided into two main cate-

gories: transparent models that convey some intrinsic degree

of interpretability and post hoc explainability techniques. One

of the most prominent directions in the field is progressing to-

ward leveraging the latter techniques, where explanation is pro-

vided to existing opaque models rather than the de novo design

of methods rooted in causality. When analyzing the content of

the ten most popular papers (based on their average citations),

it was observed that Lundberg et al.’s study43 was considerably

the most cited one, averaging over 60 citations per month since

its publication. Among these papers, four of them,43–46 including

Lundberg and colleagues’ work, present post hoc explainability

methods, while the remaining six papers47–52 focus on devel-

oping inherently interpretable models. This tendency to explore

post hoc solution could stem from the fact that several explana-
tion techniques can be applied to a variety of models with mini-

mal added efforts. Lundberg’s Shapley additive explanations

(SHAP) analysis was frequently used in the biomedical literature

that we reviewed. Although the majority of current post hoc

methods only provide locally reliable explanations and can be

misleading of model functionality,53 Shapley values could be

the sole approach that complies with legal requirements due to

its foundation in a solid theory derived from axioms of a fair

game.54

Above these variety of approaches, there is an ongoing debate

regarding the tradeoff between performance and interpretability

of machine-learning models. Widespread in the literature is the

opinion that retaining or designing interpretability into an ML so-

lution comes at a cost in accuracy of the predictions. It has been

argued that such a tradeoff is but a myth,55 and to an extent this

holds true. Often, different models, including explainable ones,

offer very similar performances.56 Within these settings, it is

therefore obvious to choose the solution that is also easier to

interpret.

However, recent advances in large-scale deep-learning

models have challenged this idea once again. The successes

of foundation models,57 which are those models trained on

broad data and then adapted to specific tasks, have put in
Patterns 4, September 8, 2023 5
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question whether any explainable model could reach the same

level of performance. The results produced by BERT,58

GPT-3,59 and DALL-E60 are outclassing those of any transparent

model by a wide margin. Recently, it was shown that large lan-

guage models such as ChatGPT61 may have the potential to

assist with clinical reasoning.62 Hence, it might become a tool

to explain AI-based approaches and support AI-based de-

cisions.

The paradigm shift produced by foundation models can offer

completely different opportunities to make use of interpretations

of their results. While a common approach with simpler models

would be to diagnose the elements that lead to specific predic-

tions (e.g., analyze the importance of features), with large-scale

models, it is possible to obtain novel designs derived from the

surprising emergent properties learned from the sheer quantity

of data, which could expand our understanding of the task at

hand in completely unexpected directions.Within the biomedical

field, this could lead to, for example, the design of novel proteins

that are not observed in nature63 or to exploring new connections

between diseases.64

Are the post hoc explainable technologies satisfying? Does

the success of large-scale deep-learning models mean that it

is futile to pursue non-post hoc explainability in AI? Perhaps it

represents an unreachable goal. However, the increase in BXAI

publications, highlighted in our survey, indicates that many

research groups believe that the future of AI-based advances

in medicine and health belongs to those who successfully

address such questions.

DATA AND CODE AVAILABILITY

All data analyzed and produced in this study, as well as the orig-

inal code, have been deposited at https://github.com/gvisona/

BiomedXAI and at the repository in Zenodo (https://doi.org/10.

5281/zenodo.8207487). Data are publicly available as of the

date of publication.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2023.100830.
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